Abstract

The Unified State Model is a method for expressing orbits using a set of seven elements. The elements consist of a quaternion and three parameters based on the velocity hodograph. A complete derivation of the original model is given in addition to two proposed modifications. Both modifications reduce the number of state elements from seven to six by replacing the quaternion with either modified Rodrigues parameters or the Exponential Map. Numerical simulations comparing the original Unified State Model, the Unified State Model with modified Rodrigues parameters, and the Unified State Model with Exponential Map, withthetraditionalCartesiancoordinateshavebeencarriedout.TheUnifiedStateModeland its derivatives outperform the Cartesian coordinates for all orbit cases in terms of accuracy and computational speed, except for highly eccentric perturbed orbits. The performance of the Unified State Model is exceptionally better for the case of orbits with continuous low- thrust propulsion with CPU simulation time being an order of magnitude lower than for the simulation using Cartesian coordinates. This makes the Unified State Model an excellent state propagator for mission optimizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.