Abstract

Spin gauge models use a real Clifford algebraic structure Rp,q associated with a real manifold of dimension p + q to describe the fundamental interactions of elementary particles. This review provides a comparison between those models and the standard model, indicating their similarities and differences. By contrast with the standard model, the spin gauge model based on R3,8 generates intermediate boson mass terms without the need to use the Higgs-Kibble mechanism and produces a precise prediction for the mass of the top quark. The potential of this model to account for exactly three families of fermions is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.