Abstract

Abstract Let S ψ ∗ $\begin{array}{} \mathcal {S}^*_\psi \end{array}$ be a subclass of starlike functions in the unit disk 𝕌, where ψ is a convex function such that ψ(0) = 1, ψ′(0) > 0, ℜ(ψ(ξ)) > 0 and ψ(𝕌) is symmetric with respect to the real axis. We obtain the sharp solution of Fekete-Szegö problem for the family S ψ ∗ $\begin{array}{} \mathcal {S}^*_\psi \end{array}$ , and then extend the result to the case of corresponding subclass defined on the bounded starlike circular domain Ω in several complex variables, which give an unified answer of Fekete-Szegö problem for the kinds of subclasses of starlike mappings defined on Ω. At last, we propose two conjectures related the same problems on the unit ball in a complex Banach space and on the unit polydisk in ℂ n .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.