Abstract

The present study establishes the scaling laws describing the structure of spherical nanoparticles formed by diffusion-limited coalescence. We produced drug-loaded nanoparticles from a poly(ethylene glycol)-poly(d,l-lactic acid) diblock polymer (PEG- b-PLA) by the nanoprecipitation method using different types of micromixing chambers to explore multiple mixing regimes and characteristic times. We first show that the drug loading of the nanoparticles is not controlled by the mixing time but solely by the drug-to-polymer ratio (D:P) in the feed and the hydrophobicity of the drug scaled via the partition coefficient P. We then procure compelling evidence that particles formed via diffusion/coalescence exhibit a relative distribution of PEG blocks between the particle core and its shell that depends only on mixing conditions (not on D:P). Scaling laws of PEG relative distribution and chain surface density were derived in different mixing regimes and showed excellent agreement with experimental data. In particular, results made evident that PEG blocks entrapment in the core of the particles occurs in the slow-mixing regime and favors the overloading (above the thermodynamic limit) of the particles with hydrophilic drugs. The present analysis compiles effective guidelines for the scale up of nanoparticles structure and properties with mixing conditions, which should facilitate their future translation to medical and industrial settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.