Abstract
We present a Reinforcement Learning (RL) algorithm to solve infinite horizon asymptotic Mean Field Game (MFG) and Mean Field Control (MFC) problems. Our approach can be described as a unified two-timescale Mean Field Q-learning: The same algorithm can learn either the MFG or the MFC solution by simply tuning the ratio of two learning parameters. The algorithm is in discrete time and space where the agent not only provides an action to the environment but also a distribution of the state in order to take into account the mean field feature of the problem. Importantly, we assume that the agent cannot observe the population’s distribution and needs to estimate it in a model-free manner. The asymptotic MFG and MFC problems are also presented in continuous time and space, and compared with classical (non-asymptotic or stationary) MFG and MFC problems. They lead to explicit solutions in the linear-quadratic (LQ) case that are used as benchmarks for the results of our algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.