Abstract

We outline a quantum convolutional coding technique for protecting a stream of classical bits and qubits. Our goal is to provide a framework for designing codes that approach the ``grandfather'' capacity of an entanglement-assisted quantum channel for sending classical and quantum information simultaneously. Our method incorporates several resources for quantum redundancy: fresh ancilla qubits, entangled bits, and gauge qubits. The use of these diverse resources gives our technique the benefits of both active and passive quantum error correction. We can encode a classical-quantum bit stream with periodic quantum gates because our codes possess a convolutional structure. We end with an example of a ``grandfather'' quantum convolutional code that protects one qubit and one classical bit per frame by encoding them with one fresh ancilla qubit, one entangled bit, and one gauge qubit per frame. We explicitly provide the encoding and decoding circuits for this example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.