Abstract
When the orbital motion and the spin motion of particles were considered simultaneously, the thermodynamic potential function of a weakly interacting Fermi gas in a weak magnetic field was derived using the thermodynamics method. Based on the derived expression, the analytical expressions of energy, heat capacity, chemical potential, susceptibility and stability conditions of the system were given, and the effects of the interparticle interactions as well as the magnetic field on the properties of the system were analyzed. It was shown that the magnetic field always causes energy and stability to decrease, while the chemical potential of the system to increase. The repulsive (attractive) interactions always increase (decrease) energy and stability, but decrease (increase) the chemical potential and paramagnetism. The repulsive (attractive) interactions decrease (increase) heat capacity of the system at high temperatures but increase (decrease) it at low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Science in China Series G: Physics, Mechanics and Astronomy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.