Abstract

Using a nonperturbative renormalization-group technique, we compute the momentum and frequency dependence of the anomalous self-energy and the one-particle spectral function of two-dimensional interacting bosons at zero temperature. Below a characteristic momentum scale k_{G}, where the Bogoliubov approximation breaks down, the anomalous self-energy develops a square-root singularity and the Goldstone mode of the superfluid phase (Bogoliubov sound mode) coexists with a continuum of excitations, in agreement with the predictions of Popov's hydrodynamic theory. Thus our results provide a unified picture of superfluidity in interacting boson systems and connect Bogoliubov's theory (valid for momenta larger than k_{G}) to Popov's hydrodynamic approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.