Abstract

We report a unified framework describing all existing protocols for spin manipulation and signal creation in frequency-modulation magnetic resonance force microscopy using classical perturbation theory. The framework is well suited for studying the dependence of the frequency shift on the cantilever amplitude via numerical simulation. We demonstrate the formalism by recovering an exact result for a single spin signal and by simulating, for the first time as a function of cantilever amplitude, the frequency shift due to a volume of noninteracting spins inverted by an adiabatic rapid passage. We show that an optimal cantilever amplitude exists that maximizes the signal. Our findings suggest that understanding the amplitude dependence of the spin signal will be important for designing future high-sensitivity experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.