Abstract
An analysis is made of the correlation between internal processes of the neurobiological system, which ostensibly generate the subjective qualia of experiential awareness, and the external environment which is comprised of objective phenomena. We describe a mechanism of vacuum-state correlation of quanta in the neurobiological system with spatially and/or temporally separated systems, resulting in a co-dependency of states. This is evaluated in the context of how strong correlation of the dipole moments (of charge and spin) of residues in biological polymers, such as deoxyribonucleic acid and microtubulin, are involved in the information processing of awareness, particularly memory, and are entangled across spatial and temporal domains (spacetime). Coherent electromagnetic emissions from both water nanostructures and associated biomolecules may modulate the electronic properties and thus behaviors of supramolecular systems, representing a significant signaling and regulatory mechanism functioning in tandem to the strong correlation of the spin and electromagnetic dipoles of polarizable structures in biological macromolecules. Strong coherence across macromolecular structures of the biological system and extension through spacetime via entanglement resolves the “binding problem†associated with the generation of conscious awareness by the brain, as it is not only the result of supposed computational activity of neuronal networks, but the integration of information from multiple reference frames across the entanglement network of spacetime. The entanglement nexus of spacetime, herein referred to as the unified spacememory network, emerges as a component of some of the recent elaborations of quantum spacetime architecture in the holographic mass solution to quantum gravity and unification. This is taken in consideration with the Susskind-Maldacena conformal field theory holographic equivalence conjecture that demonstrates the correspondence of micro-wormholes of Planck-scale dimension with quantum entanglement, resolving the information loss paradox and providing a physical and ontological explanation for nonlocality observed in quantum behavior. Together, these concepts describe an architecture of spacetime that is built from information and quantum entanglement through a micro-wormhole network. It is shown how the unified spacememory network is pivotal to engendering fundamental characteristics of awareness that are actively utilized in the macromolecular information systems of the biological organism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.