Abstract

Software-Defined Networking (SDN) allows controlling applications to install fine-grained forwarding policies in the underlying switches. Ternary Content Addressable Memory (TCAM) enables fast lookups in hardware switches with flexible wildcard rule patterns. However, the performance of packet processing is severely constrained by the capacity of TCAM, which aggravates the processing burden and latency issues. In this paper, we propose a hybrid TCAM architecture which consists of NVM-based TCAM (nvTCAM) and SRAM-based TCAM (sTCAM), utilizing nvTCAM to cache the most popular rules to improve cache-hit-ratio while relying on a very small-size sTCAM to handle cache-miss traffic to effectively decrease update latency. Considering the special rule dependency, we present an efficient Rule Migration Replacement (RMR) policy to make full utilization of both nvTCAM and sTCAM to obtain better performance. Experimental results show that the proposed architecture outperforms current TCAM architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.