Abstract

A new device architecture triple material gate oxide stack (TRIMGAS) epitaxial channel (Epi) MOSFET for reduced short channel effects (SCEs) at short gate lengths is proposed. The structure has a gate electrode consisting of three different materials, an oxide stack having high-K material on top of an SiO2 layer and an epitaxial channel profile. A two-dimensional analytical threshold voltage and drain current model has been presented. An analysis of subthreshold slope and I–V characteristics has been done for the first time including all regions of operation. The model proposed is capable of modelling various other MOSFET structures: (a) dual material gate stack (DUMGAS), (b) single material gate stack (SIMGAS), (c) straddle-gate/EJ/side-gate MOSFET oxide stack, (d) dual/hetero material gate (DMG/HMG), (e) single material gate (SMG) and (f) triple material gate (TMG), all with and without an epitaxial channel profile. A 2D device simulator, ATLAS, is used over a wide range of parameters and bias conditions to validate the analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.