Abstract

The aim of this paper is to provide a unified Lyapunov functional for an age-structured model describing a virus infection. Our main contribution is to consider a very general nonlinear infection function, gathering almost all usual ones, for the following problem: 0.1 $$\begin{aligned} \left\{ \begin{array}{lll} T'(t)=A- dT(t)-f(T(t),V(t)) \;\;\ t \ge 0,\\ i_t(t,a)+i_a(t,a)=-\delta (a) i(t,a), \\ V'(t)=\int _0^{\infty } p(a)i(t,a)da-cV(t), \end{array} \right. \end{aligned}$$ where T(t), i(t, a) and V(t) are the populations of uninfected cells, infected cells with infection age a and free virus at time t respectively. The functions $$\delta (a),$$ p(a), are respectively, the age-dependent per capita death, and the viral production rate of infected cells with age a. The global asymptotic analysis is established, among other results, by the use of compact attractor and strongly uniform persistence. Finally some numerical simulations illustrating our results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.