Abstract

A wide variety of voltage mixers and samplers are implemented with similar circuits employing switches, resistors, and capacitors. Restrictions on duty cycle, bandwidth, or output frequency are commonly used to obtain an analytical expression for the response of these circuits. This paper derives unified expressions without these restrictions. To this end, the circuits are decomposed into a polyphase multipath combination of single-ended or differential switched-series-RC kernels. Linear periodically time-variant network theory is used to find the harmonic transfer functions of the kernels and the effect of polyphase multipath combining. From the resulting transfer functions, the conversion gain, output noise, and noise figure can be calculated for arbitrary duty cycle, bandwidth, and output frequency. Applied to a circuit, the equations provide a mathematical basis for a clear distinction between a “mixing” and a “sampling” operating region while also covering the design space “in between.” Circuit simulations and a comparison with mixers published in literature are performed to support the analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.