Abstract

When a dynamic optimization problem is not decomposable by a stage-wise backward recursion, it is nonseparable in the sense of dynamic programming. The classical dynamic programming-based optimal stochastic control methods would fail in such nonseparable situations as the principle of optimality no longer applies. Among these notorious nonseparable problems, the dynamic mean-variance portfolio selection formulation had posed a great challenge to our research community until recently. Different from the existing literature that invokes embedding schemes and auxiliary parametric formulations to solve the dynamic mean-variance portfolio selection formulation, we propose in this paper a novel mean-field framework that offers a more efficient modeling tool and a more accurate solution scheme in tackling directly the issue of nonseparability and deriving the optimal policies analytically for the multi-period mean-variance-type portfolio selection problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.