Abstract

The output of this research is an interactive software package developed to enhance and expedite the design of waveguides and cavity resonators through the computation and visualization of the electric and magnetic field distribution. The software features a user-friendly interface through which users can select one of seven different configurations and specify parameters of their design, such as structure dimensions, transverse electric or magnetic mode, mode numbers, operating frequency, number of points of any of the field components along the x, y, and z axis for rectangular structures, and any 2D plane angles between 0∘ to 360∘ for cylindrical structures. Both transverse and longitudinal field components can be visualized in vector, color contour or both. The software makes it easy for users to see how the changes of physical dimensions and operating frequency affect the field distribution. Moreover, the user interface allows users to select how visualizations of the field distribution are generated and displayed. Field distributions can be displayed as static images or video animations using appropriate sequencing of computed field values at different plane cuts. The software provides all necessary warning messages for invalid input parameters. Mathematical expressions of the field components used in this software were derived from the classical solution of the wave equations using the separation of variables technique in cartesian coordinates for rectangular configurations and cylindrical coordinates for all other configurations. Results obtained using this software were validated against values found in the literature for similar types of problems, and results show perfect agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call