Abstract
To investigate the effect of hydrogen on fatigue life characteristics and crack growth behaviors through the entire fatigue life of a carbon steel, tension-compression fatigue tests and elasto-plastic fracture toughness tests were conducted in a hydrogen gas environment under the pressures of 0.7 and 115MPa. The fatigue tests revealed that the fatigue life and fracture morphology vary drastically with the hydrogen gas pressure. This study demonstrates that such differences can be explained by the combination of fatigue crack growth properties and fracture toughness properties in hydrogen gas at each pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.