Abstract

We present a unified derivation of Bohmian methods that serves as a common starting point for the derivative propagation method (DPM), Bohmian mechanics with complex action (BOMCA), and the zero-velocity complex action method (ZEVCA). The unified derivation begins with the ansatz psi = eiS/Planck's where the action (S) is taken to be complex, and the quantum force is obtained by writing a hierarchy of equations of motion for the phase partial derivatives. We demonstrate how different choices of the trajectory velocity field yield different formulations such as DPM, BOMCA, and ZEVCA. The new derivation is used for two purposes. First, it serves as a common basis for comparing the role of the quantum force in the DPM and BOMCA formulations. Second, we use the new derivation to show that superposing the contributions of real, crossing trajectories yields a nodal pattern essentially identical to that of the exact quantum wavefunction. The latter result suggests a promising new approach to deal with the challenging problem of nodes in Bohmian mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.