Abstract

A new numerical scheme is presented for computing strict maximum likelihood (ML) of geometric fitting problems having an implicit constraint. Our approach is orthogonal projection of observations onto a parameterized surface defined by the constraint. Assuming a linearly separable nonlinear constraint, we show that a theoretically global solution can be obtained by iterative Sampson error minimization. Our approach is illustrated by ellipse fitting and fundamental matrix computation. Our method also encompasses optimal correction, computing, e.g., perpendiculars to an ellipse and triangulating stereo images. A detailed discussion is given to technical and practical issues about our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.