Abstract

This paper aims to design local absorbing boundary conditions (LABCs) for the two-dimensional nonlinear Schrödinger equations on a rectangle by extending the unified approach. Based on the time-splitting idea, the main process of the unified approach is to approximate the kinetic energy part by a one-way equation, unite it with the potential energy equation, and then obtain the well-posed and accurate LABCs on the artificial boundaries. In the corners, we use the (1,1)-Padé approximation to the kinetic term and also unite it with the nonlinear term to give some local corner boundary conditions. Numerical tests are given to verify the stable and tractable advantages of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.