Abstract

AbstractWe analyse an additive-increase and multiplicative-decrease (also known as growth–collapse) process that grows linearly in time and that, at Poisson epochs, experiences downward jumps that are (deterministically) proportional to its present position. For this process, and also for its reflected versions, we consider one- and two-sided exit problems that concern the identification of the laws of exit times from fixed intervals and half-lines. All proofs are based on a unified first-step analysis approach at the first jump epoch, which allows us to give explicit, yet involved, formulas for their Laplace transforms. All eight Laplace transforms can be described in terms of two so-called scale functions associated with the upward one-sided exit time and with the upward two-sided exit time. All other Laplace transforms can be obtained from the above scale functions by taking limits, derivatives, integrals, and combinations of these.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.