Abstract

This paper presents a unified and full scattering matrix (s-matrix) formalism for modeling of acoustic waves in piezoelectric multilayered structures. A stable recursive algorithm is derived for computation of the total s-matrix of a stack in terms of the interface s-matrix, both referring to the eigenmode amplitudes. The derivation is direct and succinct, the deduced expressions of the s-matrix are terse and concise, and the recursion algorithm is efficient and convenient for implementation. The total s-matrix recursion scheme differs from the previously published partial matrix algorithms in that the recursions are conducted once for all independent of the stack boundary conditions and so the same results apply for any post-specified boundary condition. Numerical examples are given to show its numerical features that are superior to other currently used matrix formalisms, such as unconditional stability for both large and small thicknesses, being pole-free and branch point-sensitive, constant mean magnitude with stable phase, involving only dimensionless elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.