Abstract

Block transmission with cyclic prefix is a promising technique to realize high-speed data rates in frequency selective fading channels. Many popular linear precoding schemes, including orthogonal frequency-division multiplexing (OFDM), single-carrier (SC) block transmission, and time-reversal (TR), can be interpreted as such a block transmission. This paper presents a unified performance analysis which shows how the optimal precoding strategy depends on the receiver type and the optimization criterion (capacity and mean-square error). We analyze three variants of TR methods (based on maximum-ratio combining, equal-gain combining and selective combining) and two-types of pre-equalization methods (zero-forcing and minimum mean-square error). As one application of our framework, we derive optimal power control for OFDM in the presence of interference limitation for distributed antenna systems; we find that without power control, OFDM does not have any capacity advantage over SC transmissions. When comparing SC and TR, we verify that for single-antenna systems at high SNRs, SC has a capacity advantage; however, TR performs better in the low SNR regime. For multiple-antenna systems, TR always provides higher capacity, and the capacity of TR can approach that of optimal precoders with a number of distributed antennas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.