Abstract
Applications can map data on SSDs into virtual memory to transparently scale beyond DRAM capacity, permitting them to leverage high SSD capacities with few code changes. Obtaining good performance for memory-mapped SSD content, however, is hard because the virtual memory layer, the file system and the flash translation layer (FTL) perform address translations, sanity and permission checks independently from each other. We introduce FlashMap, an SSD interface that is optimized for memory-mapped SSD-files. FlashMap combines all the address translations into page tables that are used to index files and also to store the FTL-level mappings without altering the guarantees of the file system or the FTL. It uses the state in the OS memory manager and the page tables to perform sanity and permission checks respectively. By combining these layers, FlashMap reduces critical-path latency and improves DRAM caching efficiency. We find that this increases performance for applications by up to 3.32x compared to state-of-the-art SSD file-mapping mechanisms. Additionally, latency of SSD accesses reduces by up to 53.2%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.