Abstract

Underlying the classical thermodynamic principles are analogous microscopic laws, arising from the fundamental axioms of quantum mechanics. These define quantum thermodynamic variables such as quantum work and heat and characterize the possible transformations of open quantum systems. The foremost quantum thermodynamic law is a simple statement concerning the conservation of energy. Nevertheless, there exist ambiguity and disagreement regarding the precise partition of a quantum system’s energy change to work and heat. By treating quantum mechanics as a comprehensive theory, applicable to both the micro and macroscopic domains, and employing dynamical symmetries, we bridge the gaps between five popular thermodynamic approaches to the first law. These include both autonomous and semi-classical formulations, which define work in terms of an ensemble average, as well as the single shot paradigm, where work is defined as a deterministic quantity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.