Abstract
AbstractThis paper contains a proof–theoretic account of unification in intermediate logics. It is shown that many existing results can be extended to fragments that at least contain implication and conjunction. For such fragments, the connection between valuations and most general unifiers is clarified, and it is shown how from the closure of a formula under the Visser rules a proof of the formula under a projective unifier can be obtained. This implies that in the logics considered, for the n-unification type to be finitary it suffices that the m-th Visser rule is admissible for a sufficiently large m. At the end of the paper it is shown how these results imply several well-known results from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.