Abstract

We consider the compatibility checking problem for a simple fragment of CCS, called BCCSP[12], using equational unification techniques. Two high-level specifications given as two process algebraic terms with free variables are said to be compatible modulo some equivalence relation if a substitution on the free variables can make the resulting terms equivalent modulo that relation. We formulate this compatibility (modulo an equivalence relation) checking problems as unification problems in the equational theory of the the corresponding equivalence relation. We use van Glabbeek's equational axiomatizations [12] for some interesting process algebraic relations. Specifically, we consider equational axiomatizations for bisimulation equivalence and trace equivalence and establish complexity lower bounds and upper bounds for the corresponding unification and matching problems. We also show some special cases for which efficient algorithmic solutions exist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.