Abstract

In an effective medium description of acoustic metamaterials, the Willis coupling plays the same role as the bianisotropy in electromagnetism. Willis media can be described by a constitutive matrix composed of the classical effective bulk modulus and density and additional cross-coupling terms defining the acoustic bianisotropy. Based on an unifying theoretical model, we unite the properties of acoustic Willis coupling with $\mathcal{PT}$ symmetric systems under the same umbrella and show in either case that an exceptional point hosts a remarkably pronounced scattering asymmetry that is accompanied by one-way zero reflection for sound waves. The analytical treatment is backed up by experimental input in asymmetrically side-loaded wavesguides showing how gauge transformations and loss biasing can embrace both Willis materials and non-Hermitian physics to tailor unidirectional reflectionless acoustics, which is appealing for purposeful sound insulation and steering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.