Abstract

Biomaterials for load-bearing implants are expected to exhibit mechanical biocompatibility of low stiffness and high strength for avoiding stress shielding and failure of the implants in vivo, respectively. This study aimed to develop porous titanium (Ti) reinforced with long Ti fibers so that the porous Ti exhibited low Young's modulus and high tensile strength. The unidirectional Ti fiber-reinforced porous Ti with porosities (p) of 40%–58% and volume percentages of Ti fiber (Vf) of 3%–33% has been successfully fabricated via the space holder technique. Mechanical testing revealed that its strength was improved, compared with uniform porous Ti because Ti fibers prevent microscopic damage progress. The porous Ti with p = 40% and Vf = 33% exhibited the strength of 233 MPa and Young's modulus of 26 GPa, which were higher than and comparable to those of natural bones, respectively. Hence, the Ti fiber-reinforced porous Ti exhibited ideal mechanical properties for implant applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call