Abstract
We design a non-parity-time-symmetric plasmonic waveguide-cavity system, consisting of two metal-dielectric-metal stub resonators side coupled to a metal-dielectric-metal waveguide, to form an exceptional point, and realize unidirectional reflectionless propagation at the optical communication wavelength. We also show that slow-light-enhanced ultra-compact plasmonic Mach-Zehnder interferometer sensors, in which the sensing arm consists of a waveguide system based on a plasmonic analogue of electromagnetically induced transparency, lead to an order of magnitude enhancement in the refractive index sensitivity compared to a conventional metal-dielectric-metal plasmonic waveguide sensor. Finally, we show that plasmonic coaxial waveguides offer a platform for practical implementation of plasmonic waveguide-cavity systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.