Abstract
We present a novel manufacturing technique for generating unidirectional pores in UV-curable resins using self-assembled magnetic nanoparticles (MNPs) with chain-like structures. The method utilizes two templation mechanisms for pore formation: the UV-masking effect of the MNP chains and the physical presence of MNP chains themselves. Fe <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> nanoparticles and PAK-01 were used as the template and UV-curable resin, respectively. Unidirectional pores formed only when resin/MNP mixtures were cured under a strong externally applied magnetic field. Water absorption tests indicated that some of the unidirectional pores were through-hole-type pores. The pores were cylindrical with an ellipsoidal cross-section. When the UV irradiation angle (θ) was 30°, the long and short diameters of the pores were approximately 9 and 8 μm, respectively, before MNP removal, and 12 and 8 μm, respectively, after removal. After MNP removal, the ellipticity of the pores in the samples increased from 1.5 to 2.4 with the increase in θ because of the increased UV-masking effect of the MNP chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.