Abstract

Glutamine amidotransferase CAB (GatCAB), a crucial enzyme involved in translational fidelity, catalyzes three reactions: (i) the glutaminase reaction to yield ammonia (NH3 or NH4(+)) from glutamine, (ii) the phosphorylation of Glu-tRNA(Gln), and (iii) the transamidase reaction to convert the phosphorylated Glu-tRNA(Gln) to Gln-tRNA(Gln). In the crystal structure of GatCAB, the two catalytic centers are far apart, and the presence of a hydrophilic channel to transport the molecules produced by the reaction (i) was proposed. We investigated the transport mechanisms of GatCAB by molecular dynamics (MD) simulations and free energy (PMF) calculations. In the MD simulations (in total ∼1.1 μs), the entrance of the previously proposed channel is closed, as observed in the crystal structure. Instead, a novel hydrophobic channel has been identified in this study: Since the newly identified entrance opened and closed repeatedly in the MD simulations, it may act as a gate. The calculated free energy difference revealed the significant preference of the newly identified gate/channel for NH3 transport (∼10(4)-fold). In contrast, with respect to NH4(+), the free energy barriers are significantly increased for both channels due to tight hydrogen-bonding with hydrophilic residues, which hinders efficient transport. The opening of the newly identified gate is modulated by Phe206, which acts as a "valve". For the backward flow of NH3, our PMF calculation revealed that the opening of the gate is hindered by Ala207, which acts as a mechanistic "stopper" against the motion of the "valve" (Phe206). This is the first report to elucidate the detailed mechanisms of unidirectional mechanistic valved transport inside proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.