Abstract

Heavy meromyosin (HMM) forms clusters along actin filaments under low ATP concentrations. Here, we observed the growth of HMM clusters under low concentrations of ATP in real time using fluorescence microscopy. When actin filaments were loosely immobilized on positively charged lipid bilayers, clusters of HMM-GFP were readily formed. Time-lapse observation revealed that the clusters grew unidirectionally. When we used a mixture of actin filaments and copolymers of actin and acto-S1dC, a chimeric protein of actin and the myosin motor domain, HMM-GFP preferentially formed clusters along the copolymers. We thus suggest that binding of myosin motors carrying ADP and Pi induces unidirectional conformational changes in actin filaments and allosterically recruits more myosin binding. In contrast, when actin filaments and copolymers were anchored to glass substrate via stable biotin-avidin linkage, higher concentrations of HMM-GFP were required to form clusters than on the lipid bilayer. Moreover, actin filaments and copolymers were not discriminated regarding preferential cluster formation. This is presumably because the myosin-induced cooperative conformational changes in actin filaments involve changes in the helical twist. Consistent with this, cofilin clusters, which supertwist the helix, were readily formed along loosely immobilized actin filaments, but not along those anchored via biotin-avidin linkage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.