Abstract

Nonreciprocal phonon emission is predicted theoretically from the coherent excitation of two coupled optomechanical cavities arranged along a phoxonic crystal nanobeam. The latter consists of a periodic array of holes and stubs and exhibits simultaneous photonic and phononic bandgaps. It is shown that nonreciprocal phonon emission arises from a combined effect of the spatial symmetry of the cavities and their underlying coupled phononic modes and the temporal phase shift between the excitation sources. This demonstration paves the way for the development of advanced integrated phonon networks and circuits, in which mechanical waves connect different elements in phononic and optomechanical structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.