Abstract

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method widely used for the modelling of a large variety of astrophysical fluid flows in more than one dimension. Simulations of thermonuclear explosions in stars require, besides the hydrodynamic equations, a realistic equation of state, an energy source term, and a set of nuclear kinetic equations to follow the composition changes of the gas during the explosion. The implementation of a realistic stellar equation of state, and the coupling of hydrodynamics and nuclear burning are investigated in the framework of the simple shock tube geometry. We present and discuss the results of a series of SPH simulations of a detonation in the presence of (1) a single exothermic nuclear reaction, and (2) a restricted network of nuclear reactions. Our results are compared to those of identical simulations performed by other authors using a different hydrodynamic method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.