Abstract
In this survey, results on the existence, growth, uniqueness, and value distribution of meromorphic (or entire) solutions of linear partial differential equations of the second order with polynomial coefficients that are similar or different from that of meromorphic solutions of linear ordinary differential equations have been obtained. We have characterized those entire solutions of a special partial differential equation that relate to Jacobian polynomials. We prove a uniqueness theorem of meromorphic functions of several complex variables sharing three values taking into account multiplicity such that one of the meromorphic functions satisfies a nonlinear partial differential equations of the first order with meromorphic coefficients, which extends the Brosch’s uniqueness theorem related to meromorphic solutions of nonlinear ordinary differential equations of the first order.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.