Abstract

Eukaryotic genomic DNA is organized into loop structures by attachments to the nuclear matrix. These attachments to the nuclear matrix have been supposed to form the boundaries of chromosomal DNA. Insulators or boundary elements are defined by two characteristics: they interrupt promoter-enhancer communications when inserted between them, and they suppress the silencing of transgenes stably integrated into inactive chromosomal domains. We recently identified an insulator element in the upstream region of the sea urchin arylsulfatase (HpArs) gene that shows both enhancer blocking and suppression of position effects. Here, we report that Unichrom, originally identified by its G-stretch DNA binding capability, is a nuclear matrix protein that binds to the Ars insulator and canonical nuclear matrix attachment regions (MARs). We also show that Unichrom recognizes the minor groove of the AT-rich region within the Ars insulator, which may have a base-unpairing property, as well as the G-stretch DNA. Furthermore, Unichrom selectively interacts with poly(dG).poly(dC), poly(dA).poly(dT) and poly(dAT).poly(dAT), but not with poly(dGC).poly(dGC). Unichrom also shows high affinity for single-stranded G- and C-stretches. We discuss the DNA binding motif of Unichrom and the function of Unichrom in the nuclear matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.