Abstract

In this chapter, we investigate the throughput capacity of social-proximity vehicular networks. The considered network consists of N vehicles moving and communicating on a scalable grid-like street layout following the social-proximity model: each vehicle has a restricted mobility region around a specific social spot, and transmits via a unicast flow to a destination vehicle which is associated with the same social spot. Furthermore, the spatial distribution of the vehicle decays following a power-law distribution from the central social spot towards the border of the mobility region. With vehicles communicating using a variant of the two-hop relay scheme, the asymptotic bounds of throughput capacity are derived in terms of the number of social spots, the size of the mobility region, and the decay factor of the power-law distribution. By identifying these key impact factors of performance mathematically, we find three possible regimes for the throughput capacity and show that inherent mobility patterns of vehicles have considerable impact on network performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.