Abstract

Dual-phase steels have become a favored material for car bodies. In this study, the deformation behavior of dual-phase steels under uniaxial tension is investigated by means of 2D Representative Volume Elements (RVE) model. The real metallographic graphs including particle geometry, distribution and morphology are considered in this RVE model. Stress and strain distributions between martensite and ferrite are analyzed. The results show that martensite undertakes most stress without significant strain while ferrite shares the most strain. The tensile failure is the result of the deforming inhomogeneity between martensite phase and ferrite phase, which is the key factor triggering the plastic strain localization on specimen section during the tensile test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.