Abstract
It has been recently investigated [A. Azizi and S. Ebrahimi, Nano 9, 1450088 (2004).] the Paclitaxel (PTX) anticancer drug molecule adsorption on nitrogen doped graphene (NG). However, the surface strain effect on adsorption is not considered in the literature. In this study, using molecular dynamics (MD) simulation, we show that the PTX molecule adsorption can be tuned by exploiting the rippling effect of the strained NG. The dependence of the nitrogen concentration in the presence of ripples on the surface, arising due to thermal fluctuations, is examined. We have also considered the connection between the average distance of PTX from NG surface and the maximum induced deformation on the surface structure. It is demonstrated that the average distance of PTX from NG is increased with increasing the strain until a critical value is reached, and then it has remained almost constant. To this end, the dependence of the degree of ripple-type distortion of the surface on the PTX adsorption is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.