Abstract

The uniaxial ratcheting of SS304 stainless steel at high temperatures (300, 600 and 700 °C) were analyzed experimentally, and described by a cyclic constitutive visco-plasticity model. The rate dependence of the material was accounted for by introducing a viscous term. The cyclic hardening and cyclic flow behavior of the material under asymmetrical stress-controlled cycling were described by the evolution rules of kinematic hardening back stress and isotropic deforming resistance. Under the isothermal condition, temperature effect was included by terms involving temperature in the evolution equations of isotropic deforming resistance. The effect of load history on ratcheting was also considered by introducing a fading memory function of the maximum inelastic strain amplitude and isotropic deformation resistance. After the material constants were determined from the experimental data, the uniaxial ratcheting of SS304 stainless steel was numerically simulated and compared with the corresponding experimental results at high temperatures. The predicted results agree well with the experimental ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.