Abstract
The novel VCP system is a mobile physical deposition method to deposit metallic/magnetic films using various source materials including powder, lump, pre-alloyed ingots and wires. The VCP system consists of a large deposition area of 960 cm 2 and has been used for the first time to prepare magnetic thin films of Si 3 Fe 97 . The source material evaporated by a resistively heated furnace, which was position right under the substrate within the VCP system, contains small pieces of conventional 3% silicon-iron steel as source materials. The magnetic analysis of the films was achieved by using a vibrating sample magnetometer (VSM). Observations indicate that the magnetic anisotropy and coercivity are dependent on the type of substrate and the deposition conditions. Results of all films deposited on flexible kapton TM are anisotropic in the film plane whereas the films deposited on glass substrate indicate the less-well defined anisotropy in the film plane while the substrate holder of the VCP system was run at the speed of 100 rpm. In the case of stationary magnetic materials production, the films deposited on kapton and glass substrates show isotropic magnetic behaviour. All films showed planar magnetic anisotropy irrespective of type of substrate and the production conditions used. The findings are discussed in terms of scaling up the technique for the possible production of various shapes of circular, square or strip components with the compositions equivalent to that of conventional electrical steels in order to investigate a possible future to produce large scale of silicon-iron as the core materials for rotating machines and power transformers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.