Abstract

AbstractParallel molecular dynamics simulations were used to study the influence of pre-existing growth twin boundaries on the slip activity of bulk gold under uniaxial compression. The simulations were performed on a 3D, fully periodic simulation box at 300 K with a constant strain rate of 4×107 s−1. Different twin boundary interspacings from 2 nm to 16 nm were investigated. The strength of bulk nano-twinned gold was found to increase as the twin interspacing was decreased. However, strengthening effects related to the twin size were less significant in bulk gold than in gold nanopillars. The atomic analysis of deformation modes at the twin boundary/slip intersection suggested that the mechanisms of interfacial plasticity in nano-twinned gold were different between bulk and nanopillar geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.