Abstract

The ratcheting and strain cyclic characteristics of U71Mn rail steel were experimentally researched under uniaxial and non-proportionally multiaxial cyclic loading at room temperature. The effects of cyclic strain, stress and their histories on strain cyclic characteristics and ratcheting were studied, respectively. It is shown that: U71Mn rail steel exhibits a cyclic stabilization and non-memorization for previous loading history under strain cycling; however, the ratcheting of the material depends greatly not only on the current values of mean stress and stress amplitude, but also on their histories; the non-proportionality of multiaxial loading path only causes a negligible additional hardening for the material. Based on the Ohno–Wang non-linear kinematic hardening model [Int. J. Plast. 9 (1993) 375, 391], the uniaxial and multiaxial ratcheting behaviours of the material were simulated by a visco-plastic constitutive model. The simulated results are in good consistence with the experimental ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.