Abstract

Four-wavelength-channel wavelength-division multiplexing (WDM) lab transmission system experiments with buried heterostructure (BH) lasers at 1200-, 1240-, 1280-, and 1320-nm wavelengths, all-fiber WDM devices, and 20-km single-mode link fiber at a 560-Mb/s bit rate demonstrated that unidirectional and bidirectional WDM transmission systems could be operated successfully by using all-fiber 4 lambda multiplexing, 4 lambda demultiplexing, or 4 lambda multiplexing/demultiplexing devices with a low insertion loss per wavelength channel (2.1-4.7 dB), enough optical far-end crosstalk attenuation (18-37 dB), and high optical near-end crosstalk attenuation (43-49 dB). It is concluded that the four-wavelength-channel WDM lab transmission system at 560 Mb/s mainly used as a test bed is not representative of future unidirectional trunk WDM systems. Such systems favor distributed feedback (DFB) lasers in the 1500-1560-nm wavelength range where fiber attenuation is lower than in the 1200-1320 nm wavelength range and where 1500-nm DFB lasers with a smaller linewidth do not limit the repeater distance as much because of mode partition noise.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call