Abstract

Shortly after a surface is submerged in the sea, a conditioning film is generally formed by adsorption of organic molecules, such as polysaccharides. This could affect transport of molecules and ions between the seawater and the surface. An artificial seawater model system was developed to understand how adsorbed polysaccharides impact copper binding by glutaraldehyde-crosslinked polyethyleneimine coatings. Coating performance was also determined when competed against copper-chelating EDTA. Polysaccharide adsorption and copper binding and distribution were investigated using advanced analytical techniques, including depth-resolved time-of-flight secondary ion mass spectroscopy, grazing incidence X-ray absorption near-edge spectroscopy, quartz crystal microbalance with dissipation monitoring and X-ray photoelectron spectroscopy. In artificial seawater, the polysaccharides adsorbed in a swollen state that copper readily penetrated and the glutaraldehyde-polyethyleneimine coatings outcompeted EDTA for copper binding. Furthermore, the depth distribution of copper species was determined with nanometre precision. The results are highly relevant for copper-binding and copper-releasing materials in seawater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.