Abstract

Three dimensional Coulomb branches have a prominent role in the study of moduli spaces of supersymmetric gauge theories with 8 supercharges in 3, 4, 5, and 6 dimensions. Inspired by simply laced 3d mathcal{N} = 4 supersymmetric quiver gauge theories, we consider Coulomb branches constructed from non-simply laced quivers with edge multiplicity k and no flavor nodes. In a computation of the Coulomb branch as the space of dressed monopole operators, a center-of-mass U(1) symmetry needs to be ungauged. Typically, for a simply laced theory, all choices of the ungauged U(1) (i.e. all choices of ungauging schemes ) are equivalent and the Coulomb branch is unique. In this note, we study various ungauging schemes and their effect on the resulting Coulomb branch variety. It is shown that, for a non-simply laced quiver, inequivalent ungauging schemes exist which correspond to inequivalent Coulomb branch varieties. Ungauging on any of the long nodes of a non-simply laced quiver yields the same Coulomb branch mathcal{C} . For choices of ungauging the U(1) on a short node of rank higher than 1, the GNO dual magnetic lattice deforms anisotropically such that it no longer corresponds to a Lie group, and therefore, the monopole formula yields a non-valid Coulomb branch. However, if the ungauging is performed on a short node of rank 1, the one-dimensional magnetic lattice is rescaled along its single direction i.e. isotropically and the corresponding Coulomb branch is an orbifold of the form mathcal{C} /ℤk . Ungauging schemes of 3d Coulomb branches provide a particularly interesting and intuitive description of a subset of actions on the nilpotent orbits studied by Kostant and Brylinski [1]. The ungauging scheme analysis is carried out for minimally unbalanced Cn, affine F4, affine G2, and twisted affine {D}_4^{(3)} quivers, respectively. The analysis is complemented with computations of the Highest Weight Generating functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.