Abstract

This review aims to analyse the role of solution nuclear magnetic resonance spectroscopy in pressure-induced in vitro studies of protein unfolding. Although this transition has been neglected for many years because of technical difficulties, it provides important information about the forces that keep protein structure together. We first analyse what pressure unfolding is, then provide a critical overview of how NMR spectroscopy has contributed to the field and evaluate the observables used in these studies. Finally, we discuss the commonalities and differences between pressure-, cold- and heat-induced unfolding. We conclude that, despite specific peculiarities, in both cold and pressure denaturation the important contribution of the state of hydration of nonpolar side chains is a major factor that determines the pressure dependence of the conformational stability of proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call