Abstract

The escape process from the native valley for proteins subjected to a constant stretching force is examined using a model for a beta barrel. For a wide range of forces, the unfolding dynamics can be treated as one-dimensional diffusion, parametrized in terms of the end-to-end distance. In particular, the escape times can be evaluated as first passage times for a Brownian particle moving on the protein free-energy landscape, using the Smoluchowski equation. At strong forces, the unfolding process can be viewed as a diffusive drift away from the native state, while at weak forces thermal activation is the relevant mechanism. An escape-time analysis within this approach reveals a crossover from an exponential to an inverse Gaussian escape-time distribution upon passing from weak to strong forces. Moreover, a single expression valid at weak and strong forces can be devised both for the average unfolding time as well as for the corresponding variance. The analysis offers a possible explanation of recent experimental findings for the proteins ddFLN4 and ubiquitin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.