Abstract

CX-5461, also known as pidnarulex, is a strong G4 stabilizer and has received FDA fast-track designation for BRCA1- and BRCA2- mutated cancers. However, quantitative measurements of the unfolding rates of CX-5461-G4 complexes which are important for the regulation function of G4s, remain lacking. Here, we employ single-molecule magnetic tweezers to measure the unfolding force distributions of c-MYC G4s in the presence of different concentrations of CX-5461. The unfolding force distributions exhibit three discrete levels of unfolding force peaks, corresponding to three binding modes. In combination with a fluorescent quenching assay and molecular docking to previously reported ligand-c-MYC G4 structure, we assigned the ~69 pN peak corresponding to the 1:1 (ligand:G4) complex where CX-5461 binds at the G4's 5'-end. The ~84 pN peak is attributed to the 2:1 complex where CX-5461 occupies both the 5' and 3'. Furthermore, using the Bell-Arrhenius model to fit the unfolding force distributions, we determined the zero-force unfolding rates of 1:1, and 2:1 complexes to be (2.4 ± 0.9) × 10-8 s-1 and (1.4 ± 1.0) × 10-9 s-1 respectively. These findings provide valuable insights for the development of G4-targeted ligands to combat c-MYC-driven cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.